On restrained domination number of some wheel related graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

Some Algorithmic Results on Restrained Domination in Graphs

A set D ⊆ V of a graph G = (V,E) is called a restrained dominating set of G if every vertex not in D is adjacent to a vertex in D and to a vertex in V \D. The MINIMUM RESTRAINED DOMINATION problem is to find a restrained dominating set of minimum cardinality. Given a graph G, and a positive integer k, the RESTRAINED DOMINATION DECISION problem is to decide whether G has a restrained dominating ...

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

On the Domination Number of Some Graphs

Let G = (V,E) be a simple graph. A set S ⊆ V is a dominating set of graph G, if every vertex in V − S is adjacent to at least one vertex in S. The domination number γ(G) is the minimum cardinality of a dominating set in G. It is well known that if e ∈ E(G), then γ(G− e)−1 ≤ γ(G) ≤ γ(G− e). In this paper, as an application of this inequality, we obtain the domination number of some certain graph...

متن کامل

Results on Total Restrained Domination in Graphs

Let G = (V,E) be a graph. A set S ⊆ V (G) is a total restrained dominating set if every vertex of G is adjacent to a vertex in S and every vertex of V (G)\S is adjacent to a vertex in V (G)\S. The total restrained domination number of G, denoted by γtr(G), is the smallest cardinality of a total restrained dominating set of G. In this paper we continue the study of total restrained domination in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Malaya Journal of Matematik

سال: 2019

ISSN: 2319-3786,2321-5666

DOI: 10.26637/mjm0701/0020